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We describe a physically based derivation of the Weibull distribution with respect to 

fragmentation processes.  In this approach we consider the result of a single-event fragmentation 

leading to a branching tree of cracks that show geometric scale invariance (fractal behavior).  

With this approach, because the Rosin-Rammler type distribution is just the integral form of the 

Weibull distribution, it, too, has a physical basis.  In further consideration of mass distributions 

developed by fragmentation processes, we show that one particular mass distribution closely 

resembles the empirical lognormal distribution.  This result suggests that the successful use of 

the lognormal distribution to describe fragmentation distributions may have been simply 

fortuitous. 
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I.  Historical Background 
 

 In 1933 Rosin and Rammler1,2 proposed the use of an empirical distribution for 

description of particle sizes, which they obtained from data describing the crushing of coal and 

other materials.  In 1939 Weibull3 proposed the same distribution (as we show below), which he 

obtained from the study of the fracture of materials under repetitive stress.  The distribution 

proposed was strictly empirical4, until Austin et al.5 derived it to describe batch grinding in 1972.  

Later, Peterson et al.6 and Brown7, and Wohletz et al.8 independently rederived the distribution.  

Austin et al., Peterson et al., and Brown each derived the distribution from a somewhat different 

point of view, but they all used a simple but nonetheless empirical power law to describe the 

breakup of a single particle into smaller particles.  In this article we eliminate this shortcoming 

and thus put the Weibull distribution on a solid theoretical basis, stemming from physical 

principles. 

 

 

II.  Derivation of the Weibull Distribution 
 

 Brown7 began his theory of sequential fragmentation with the equation 

    n m C n m f m m dm
m

( ) ( ' ) ( ' ) '= →
∞

∫     . (1) 

Here n(m) is the number distribution in units of particles per unit mass of mass m between m and 

m + dm.  ƒ(m′→ m) is the single-event particle distribution function and expresses the 

distribution in mass, m, arising from the fragmentation of a single, more massive particle of mass 

m′.  Equation (1) represents the summing of all contributions to the distribution of m from the 

fragmentation of all particles of mass m′ > m. 

 

 Brown7 set the constant C equal to m1
1− , and chose 
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where -1 < γ ≤0. 

 

Inserting Equation (2) into Equation (1), we have 
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The solution to Equation (3) is 
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which is the Weibull distribution in particle number.  Equation (4) has been normalized such that 

     N n m dmT =
∞

∫ ( )
0

   , (5) 

where NT is the total number of fragments in the distribution. 

 

 The cumulative form of Equation (4) is 

   
N m

N

n m dm

n m dm

m
m

T

m( )
( )

( )
exp

>
= = −



 




+

















∞

∞

∫

∫

+

0

1

1

1

γ

γ
   . (6) 

 

 Brown7 defended his choice of Equation (2) on the basis of existing experimental data9,10 

(see, e.g., Fig. 1 and refs. 9, 10) and the extensive successful empirical use of Equation (6).  Until 

now, the use of Equation (2) was empirical, but as we shall see below, it has a deeper meaning 

based securely on physical principles. 
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 The brittle fracturing of any particle results in a branching tree of cracks (Fig. 2), as 

discussed by Austin11 and Van Cleef12.  This branching tree of cracks looks the same on any 

scale, and thus can be described as a fractal13.  As reiterated by Samson et al.14, a method of 

describing such a thing as the fragments produced by a branching tree of cracks is the use of the 

Covering Set approach.  Given a set of points in space, the following relationship holds true if the 

set is a fractal: 

     K a a Df( ) = −  (7) 

where K(a) is the number of segments (in one dimension) of length a needed to cover the set.  

Similarly, K(a) for a two- or three-dimensional set would correspond to the number of circles or 

spheres of radius a.  In the present case, a set of spherical volumes describes the distribution of 

fragments resulting from the fractal cracking process, and Df is the fractal dimension.  For the 
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case where the fragmented material density is constant, the set of volumes becomes a set of 

masses.  Equation (7) then becomes 

     f m m m
Df

( ' )→ =
−

3     (8) 

where γ  = -Df /3, -1 < γ ≤ 0, and 0 ≤ Df < 3. 

 

 
 

 So in addition to the numerous meanings of the parameter γ discussed by Brown7, we see 

that γ has a deeper meaning, namely that -3γ is the fractal dimension, Df, which is generally 

understood to be a geometrically based attribute of a system13: 

    ( )γ = −
→

= −
→m

ff m m D

m0 1 3
lim

log ( ' )
log

 (9) 

Equation (2), then, has a solid basis in both theory and experiment, and the Weibull distribution 

is no longer empirical.  We note that in writing this article, it is not our intention to investigate 

the phenomena involved in the actual cracking of material on a microscopic scale (cf. Grady15) 

nor do we pretend to be experts on the subject.  We have chosen rather to investigate 

fragmentation of bulk matter and the resulting macroscopic mass distributions that, to our 

understanding, derive from far-field stresses as opposed to the near-field stresses that primarily 

determine particle surface textures. 
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III.  The Connection with the Rosin-Rammler Distribution 
 

 The weight-size distribution proposed by Rosin and Rammler1 in 1933 is 
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Here, M(>�) is the cumulative mass of all particles of mass greater than size �, MT is the total 

mass of the distribution, σ is a size related to the average size of the distribution, and the 

exponent k is a free parameter.  Equation (10) has enjoyed extensive successful empirical use. 

 

 Equation (9) can be converted to a mass distribution by setting �/σ = (m/m2)1/3 so that 
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   , (11) 

where m2 is related to the average mass of the distribution. 

 

 Equation (10) is of the form of Equation (6) except that Equation (6) describes the 

cumulative particle distribution, whereas Equation (11) describes the cumulative mass 

distribution.  Equation (6) is nevertheless of the Rosin-Rammler form. 

 

 If n(m) describes the number of particles of mass m between m and m+dm and each of the 

particles has mass m, then the mass distribution is just mn(m), which is the total mass of particles 

of mass m between m and m+dm.  The cumulative mass distribution is given by 

    M m mn m dm
m

( ) ( )< = ∫
0

. (12) 

Further, 

     
dM
dm

mn m= ( )    . (13) 

By taking the derivative of Equation (11) with respect to m, we obtain 



   
Derivation of the Weibull Distribution... (LA-UR  94-3297) 7 

   mn m
M
m

k m
m

m
m

T

k k

( ) exp=








 −

























−

2 2

3 1

2

3

3
   . (14) 

This, too, is a Weibull distribution (the power on the left (m/m2) is one less than the (m/m2) in the 

square brackets), but Equation (14) is a Weibull distribution in mass whereas Equation (4) is a 

Weibull distribution in particle number.  Another difference is that in Equation (4) the 

f m m m( ' )→ = γ  term now has a physical basis, whereas the corresponding term for Equation 

(11) does not5.  We now see, however, that the derivative of any Rosin-Rammler distribution is a 

Weibull distribution.  This observation indicates that the demonstrated physical basis for the 

Weibull distribution is true also for the Rosin-Rammler distribution. 

 

 

IV.  The Use of the Weibull Distribution 
 

 In his article Brown7 advocated the use of the mass distribution, mn(m), rather than the 

particle number distribution, n(m), because the latter is tedious—if not impossible—to observe 

(the use of the cumulative distribution, Equation (6), has been preferred). 

 

 The mass distribution, mn(m), from Equation (4) is 
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Alternatively, if we make use of a logarithmic scale in m, say u ≡ ln m, and note that 

     n u du n m dm( ) ( )=   , (16) 

then 

     mn m n u( ) ( )=    . (17) 

Thus mn(m) also gives the number of particles per unit natural logarithm in m. 

 

 Furthermore, if mn(m) is the number of particles per unit logarithm in m, and the mass of 

each particle is m, then the total mass of particles per unit logarithm is just m2n(m).  Thus 
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This distribution is shown in Figure 3 where it is compared to the lognormal distribution: 

   
( )

λ
σ π σ

( ) exp
ln ln

m
m m

= −
−













1
2 2

3
2

2    , (19) 

where λ(m) is the mass, m, distribution in units of mass per unit ln interval, m3 is a constant that 

allows variable positioning of the curve, and σ is the standard deivation in ln m units. 

 

 
 

 The quantity m2n(m) is precisely what is measured when a sample of particles is sifted 

through a series of sieves of decreasing mesh size where the mesh sizes between any two 

adjacent sieves is a fixed ratio.  As Brown and collaborators noted7,8, the form m2n(m) closely 

resembles the lognormal distribution11 (see Fig. 3), a distribution that has enjoyed a long history 

of successful, empirical use; we note the lognormal distribution has a mathematical basis16, but 

no physical basis. 

 

 The gathering of data through a series of sieves with a fixed size ratio between them is 

standard procedure in many fields; for example, in the analysis of geological materials such as 
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sand and volcanic ash.  For this procedure, the mass left on each sieve ∆M, is recorded in a 

logarithmic bin of width ∆φ where φ ≡ -log2(�/�0), and where �0 ≡ 1 mm.  It can easily be shown 

that 

     dM
d

m n m
φ

= −3 2 2ln ( )    . (20) 

The negative sign and the ln 2 originate from the definition of the φ-scale, and the 3 provides the 

conversion from mass to size (assuming spherical particles of equal density).  An illustration of 

the effect of varying γ in Equation (18) is shown by Figure 4 where distributions of different γ 

values are plotted as dM/dφ vs φ from Equation (20).  This illustration shows that as γ increases 

(signifying that the particles are undergoing further processing), the distribution becomes finer in 

particle size and more peaked. 

 

 
 

 As in many fields, the lognormal distribution has been typically used to describe the data 

because it is a convenient approximation to the shape of the data such as dM/dφ.  Although 

application of the lognormal distribution to this type of data is traditional, its satisfactory 

representation of the data may be simply fortuitous.  In contrast, we believe that application of 
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Equation (18), giving m2n(m), is a more proper, physically based formulation to apply.  An 

example of the use of m2n(m) for soot particle size data18, using the mass to size conversion of 

Equation (20), is shown in Figure 5. 

 

 
 

 

V.  Characteristics of the Lognormal-Like m2n(m) Distribution 
 

 In general form, the equation describing m2n(m) is given by 
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where m0 allows variable positioning of the distribution.  The peak of the distribution, mp (also 

called the most probable mass or the mode), may be obtained by taking the derivative of 

Equation (18) and setting the result equal to zero.  We obtain 
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This function varies relatively slowly with γ. 

 

 We may find the average mass, m , of the distribution by setting 
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With the use of the complete gamma function 
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we find that 
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Combining this result with mp from Equation (22), we obtain 
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The integrals involved in finding the standard deviation of m2n(m) proved to be intractable.  An 

approximate curve was found numerically for the full width at half maximum (FWHM).  It is (in 

ln m units): 

    ( )FWHM ≈
+

− − +2 3444
1

0 68 017 1. . . ln
γ

γ    , (28) 
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which is good to within <1% for the range of 0 < (γ+1) < 0.8 and to within 2% for 0.8 < (γ+1) 

<1.0.  The data rarely (if ever) fall outside this range.  At (γ+1) � 0 the distribution is very broad 

and flat.  At (γ+1) ≈ 1, the distribution is quite narrow and peaked.  For the lognormal 

distribution, shown in Equation (19), FWHM = σ 2 2ln .  Figure 6 illustrates m , mp, and 

FWHM as described above. 

 

 
 

 The cumulative mass of the distribution m2n(m) is obtained by setting 
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The result is obtained with the use of the incomplete gamma functions 
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The results are 
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and 
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where 
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 Figure 7 is a plot of M(<m)/MT vs log m/m1, whereas Figure 8 shows log m/m1 plotted vs 

M(<m) in probability %. 
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VI.  Conclusions 
 

 Because the fragmentation of any single particle results in a branching tree of cracks that 

looks the same on any scale, the process can be described by a fractal.  Further, the Covering Set 

approach leads to exactly the formulation previously and empirically used to describe the mass 

distribution of particles resulting from the fragmentation of a single larger particle.  Thus all of 

the principal distributions used over the years to describe particle-sizes have a physical basis, and 

the fractal dimension, Df = -3γ (0 ≤ Df ≤ 3), gives a deeper meaning to Brown’s7 parameter, γ, 

which is central to the problem of deriving the various distributions discussed. 

 

 In deriving the Weibull distribution from physical principles, we have shown that the 

Rosin-Rammler distribution is just the integral of the Weibull distribution so that it, too, has a 

physical basis.  In our synthesis, we have defined the m2n(m) form of the mass distribution.  This 

formulation closely resembles the lognormal distribution and suggests that the successful 
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empirical use of the lognormal distribution for particle size studies over the last century may 

have been simply fortuitous.  This finding suggests that the same situation may exist in other 

fields where the lognormal shape has been empirically used, and has had legitimacy bestowed 

upon it by many years of use. 

 

 We thank an anonymous referee of this article for useful remarks. 
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